“Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about Real Time?” – Slides (including TIBCO Examples) from JAX 2014 Online

Slides from my talk “Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about Real Time?” at JAX 2014 (Twitter #jaxcon) in Mainz are online. JAX is a great conference with interesting topics and many good speakers!

Content (Data Warehouse, Business Intelligence, Hadoop, Stream Processing)

Big data represents a significant paradigm shift in enterprise technology. Big data radically changes the nature of the data management profession as it introduces new concerns about the volume, velocity and variety of corporate data. New business models based on predictive analytics, such as recommendation systems or fraud detection, are relevant more than ever before. Apache Hadoop seems to become the de facto standard for implementing big data solutions. For that reason, solutions from many different vendors emerged on top of Hadoop.

But hold on… Companies have spent a lot of many to implement a data warehouse for the same reason in the last decades. Both, Apache Hadoop and data warehouse were invented to store and analyze big data. This session explains the different architectural and technical concepts of Apache Hadoop and a data warehouse. The following questions will be answered: When to use which alternative? Does a data warehouse even have a future at all? Or how can we combine both alternatives?

However, Hadoop and a Data Warehouse cannot solve every big data problem. Complex event processing and real-time analytics have to be solved in another way. So, in-memory computing and streaming platforms are good alternatives or complements to Hadoop for processing and analyzing big data. For that reasons, an almost unimaginable number of solutions for big data emerged on the market. This session shows and compares the most important concepts and solutions for processing and analyzing big data, and discusses how they complement each other.

TIBCO Products (Spotfire, StreamBase, BusinessEvents, BusinessWorks) and Real World Examples

I discuss a good big data architecture which includes Data Warehouse / Business Intelligence + Apache Hadoop + Real Time / Stream Processing. Several real world example are shown. TIBCO offers some very nice products for realizing these use cases, e.g. Spotfire (Business Intelligence / BI), StreamBase (Stream Processing), BusinessEvents (Complex Event Processing / CEP) and BusinessWorks (Integration / ESB). TIBCO is also ready for Hadoop by offering connectors and plugins for many important Hadoop frameworks / interfaces such as HDFS, Pig, Hive, Impala, Apache Flume and more.

Slides

Here are the slides:

Click on the button to load the content from www.slideshare.net.

Load content

As always, I appreciate feedback and discussions.

Kai Wähner

Kai Waehner

builds cloud-native event streaming infrastructures for real-time data processing and analytics

Recent Posts

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual.…

1 week ago

IoT and Data Streaming with Kafka for a Tolling Traffic System with Dynamic Pricing

In the rapidly evolving landscape of intelligent traffic systems, innovative software provides real-time processing capabilities,…

3 weeks ago

Fraud Prevention in Under 60 Seconds with Apache Kafka: How A Bank in Thailand is Leading the Charge

In the fast-paced world of finance, the ability to prevent fraud in real-time is not…

4 weeks ago

When to Choose Apache Kafka vs. Azure Event Hubs vs. Confluent Cloud for a Microsoft Fabric Lakehouse

Choosing between Apache Kafka, Azure Event Hubs, and Confluent Cloud for data streaming is critical…

1 month ago

How Microsoft Fabric Lakehouse Complements Data Streaming (Apache Kafka, Flink, et al.)

In today's data-driven world, understanding data at rest versus data in motion is crucial for…

1 month ago

What is Microsoft Fabric for Azure Cloud (Beyond the Buzz) and how it Competes with Snowflake and Databricks

If you ask your favorite large language model, Microsoft Fabric appears to be the ultimate…

2 months ago