Slides from my talk “Hadoop and Data Warehouse (DWH) – Friends, Enemies or Profiteers? What about Real Time?” at JAX 2014 (Twitter #jaxcon) in Mainz are online. JAX is a great conference with interesting topics and many good speakers!
Big data represents a significant paradigm shift in enterprise technology. Big data radically changes the nature of the data management profession as it introduces new concerns about the volume, velocity and variety of corporate data. New business models based on predictive analytics, such as recommendation systems or fraud detection, are relevant more than ever before. Apache Hadoop seems to become the de facto standard for implementing big data solutions. For that reason, solutions from many different vendors emerged on top of Hadoop.
But hold on… Companies have spent a lot of many to implement a data warehouse for the same reason in the last decades. Both, Apache Hadoop and data warehouse were invented to store and analyze big data. This session explains the different architectural and technical concepts of Apache Hadoop and a data warehouse. The following questions will be answered: When to use which alternative? Does a data warehouse even have a future at all? Or how can we combine both alternatives?
However, Hadoop and a Data Warehouse cannot solve every big data problem. Complex event processing and real-time analytics have to be solved in another way. So, in-memory computing and streaming platforms are good alternatives or complements to Hadoop for processing and analyzing big data. For that reasons, an almost unimaginable number of solutions for big data emerged on the market. This session shows and compares the most important concepts and solutions for processing and analyzing big data, and discusses how they complement each other.
I discuss a good big data architecture which includes Data Warehouse / Business Intelligence + Apache Hadoop + Real Time / Stream Processing. Several real world example are shown. TIBCO offers some very nice products for realizing these use cases, e.g. Spotfire (Business Intelligence / BI), StreamBase (Stream Processing), BusinessEvents (Complex Event Processing / CEP) and BusinessWorks (Integration / ESB). TIBCO is also ready for Hadoop by offering connectors and plugins for many important Hadoop frameworks / interfaces such as HDFS, Pig, Hive, Impala, Apache Flume and more.
Here are the slides:
Click on the button to load the content from www.slideshare.net.
As always, I appreciate feedback and discussions.
Kai Wähner
In the age of digitization, the concept of pricing is no longer fixed or manual.…
In the rapidly evolving landscape of intelligent traffic systems, innovative software provides real-time processing capabilities,…
In the fast-paced world of finance, the ability to prevent fraud in real-time is not…
Choosing between Apache Kafka, Azure Event Hubs, and Confluent Cloud for data streaming is critical…
In today's data-driven world, understanding data at rest versus data in motion is crucial for…
If you ask your favorite large language model, Microsoft Fabric appears to be the ultimate…