Categories: EAIESBSOA

Enterprise Integration Patterns (EIP) Revisited in 2014

Today, I had a talk about “Enterprise Integration Patterns (EIP) Revisited in 2014” at Java Forum Stuttgart 2014, a great conference for developers and architects with 1600 attendees.

Enterprise Integration Patterns

Data exchanges between companies increase a lot. Hence, the number of applications which must be integrated increases, too. The emergence of service-oriented architectures and cloud computing boost this even more. The realization of these integration scenarios is a complex and time-consuming task because different applications and services do not use the same concepts, interfaces, data formats and technologies.

Originated and published over ten years ago by Gregor Hohpe and Bobby Woolf,  Enteprise Integration Patterns (EIP) became the world wide de facto standard for describing integration problems. They offer a standardized way to split huge, complex integration scenarios into smaller recurring problems. These patterns appear in almost every integration project. Most developers already have used some of these patterns such as the filter, splitter or content-based-router – some of them without being aware of using EIPs. Today, EIPs are still used to reduce efforts and complexity a lot. This session revisits EIPs and gives an overview about the status quo.

Open Source, Apache Camel, Talend ESB, JBoss, WSO2, TIBCO BusinessWorks, StreamBase, IBM WebSphere, Oracle, …

Fortunately, EIPs offer more possibilities than just be used for modelling integration problems in a standardized way. Several frameworks and tools already implement these patterns. The developer does not have to implement EIPs on his own. Therefore, the end of the session shows different frameworks and tools available, which can be used for modelling and implementing complex integration scenarios by using the EIPs.

Slides

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

builds cloud-native event streaming infrastructures for real-time data processing and analytics

Recent Posts

How Siemens Healthineers Leverages Data Streaming with Apache Kafka and Flink in Manufacturing and Healthcare

Siemens Healthineers, a global leader in medical technology, delivers solutions that improve patient outcomes and…

6 days ago

My Road to Lufthansa HON Circle Status in 2025

Discover my journey to achieving Lufthansa HON Circle (Miles & More) status in 2025. Learn…

1 week ago

The Data Streaming Landscape 2025

Data streaming is a new software category. It has grown from niche adoption to becoming…

3 weeks ago

Top Trends for Data Streaming with Apache Kafka and Flink in 2025

Apache Kafka and Apache Flink are leading open-source frameworks for data streaming that serve as…

3 weeks ago

Data Streaming in Healthcare and Pharma: Use Cases and Insights from Cardinal Health

This blog delves into Cardinal Health’s journey, exploring how its event-driven architecture and data streaming…

4 weeks ago

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual.…

1 month ago