Categories: EAIESBSOA

Enterprise Integration Patterns (EIP) Revisited in 2014

Today, I had a talk about “Enterprise Integration Patterns (EIP) Revisited in 2014” at Java Forum Stuttgart 2014, a great conference for developers and architects with 1600 attendees.

Enterprise Integration Patterns

Data exchanges between companies increase a lot. Hence, the number of applications which must be integrated increases, too. The emergence of service-oriented architectures and cloud computing boost this even more. The realization of these integration scenarios is a complex and time-consuming task because different applications and services do not use the same concepts, interfaces, data formats and technologies.

Originated and published over ten years ago by Gregor Hohpe and Bobby Woolf,  Enteprise Integration Patterns (EIP) became the world wide de facto standard for describing integration problems. They offer a standardized way to split huge, complex integration scenarios into smaller recurring problems. These patterns appear in almost every integration project. Most developers already have used some of these patterns such as the filter, splitter or content-based-router – some of them without being aware of using EIPs. Today, EIPs are still used to reduce efforts and complexity a lot. This session revisits EIPs and gives an overview about the status quo.

Open Source, Apache Camel, Talend ESB, JBoss, WSO2, TIBCO BusinessWorks, StreamBase, IBM WebSphere, Oracle, …

Fortunately, EIPs offer more possibilities than just be used for modelling integration problems in a standardized way. Several frameworks and tools already implement these patterns. The developer does not have to implement EIPs on his own. Therefore, the end of the session shows different frameworks and tools available, which can be used for modelling and implementing complex integration scenarios by using the EIPs.

Slides

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Fully Managed (SaaS) vs. Partially Managed (PaaS) Cloud Services for Data Streaming with Kafka and Flink

The cloud revolution has reshaped how businesses deploy and manage data streaming with solutions like…

5 days ago

Apache Flink: Overkill for Simple, Stateless Stream Processing and ETL?

Discover when Apache Flink is the right tool for your stream processing needs. Explore its…

1 week ago

Virgin Australia’s Journey with Apache Kafka: Driving Innovation in the Airline Industry

Data streaming with Apache Kafka and Flink is transforming the airline industry, enabling real-time efficiency…

2 weeks ago

Stateless vs. Stateful Stream Processing with Kafka Streams and Apache Flink

The rise of stream processing has changed how we handle and act on data. While…

4 weeks ago

How Siemens Healthineers Leverages Data Streaming with Apache Kafka and Flink in Manufacturing and Healthcare

Siemens Healthineers, a global leader in medical technology, delivers solutions that improve patient outcomes and…

1 month ago

My Road to Lufthansa HON Circle Status in 2025

Discover my journey to achieving Lufthansa HON Circle (Miles & More) status in 2025. Learn…

1 month ago