Categories: EAIESBSOA

Enterprise Integration Patterns (EIP) Revisited in 2014

Today, I had a talk about “Enterprise Integration Patterns (EIP) Revisited in 2014” at Java Forum Stuttgart 2014, a great conference for developers and architects with 1600 attendees.

Enterprise Integration Patterns

Data exchanges between companies increase a lot. Hence, the number of applications which must be integrated increases, too. The emergence of service-oriented architectures and cloud computing boost this even more. The realization of these integration scenarios is a complex and time-consuming task because different applications and services do not use the same concepts, interfaces, data formats and technologies.

Originated and published over ten years ago by Gregor Hohpe and Bobby Woolf,  Enteprise Integration Patterns (EIP) became the world wide de facto standard for describing integration problems. They offer a standardized way to split huge, complex integration scenarios into smaller recurring problems. These patterns appear in almost every integration project. Most developers already have used some of these patterns such as the filter, splitter or content-based-router – some of them without being aware of using EIPs. Today, EIPs are still used to reduce efforts and complexity a lot. This session revisits EIPs and gives an overview about the status quo.

Open Source, Apache Camel, Talend ESB, JBoss, WSO2, TIBCO BusinessWorks, StreamBase, IBM WebSphere, Oracle, …

Fortunately, EIPs offer more possibilities than just be used for modelling integration problems in a standardized way. Several frameworks and tools already implement these patterns. The developer does not have to implement EIPs on his own. Therefore, the end of the session shows different frameworks and tools available, which can be used for modelling and implementing complex integration scenarios by using the EIPs.

Slides

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

When (Not) to Use Queues for Kafka?

Apache Kafka has long been the foundation for real-time data streaming. With the release of…

2 days ago

Diskless Kafka at FinTech Robinhood for Cost-Efficient Log Analytics and Observability

Diskless Kafka is transforming how fintech and financial services organizations handle observability and log analytics.…

1 week ago

Shift Left in Automotive: Real-Time Intelligence from Vehicle Telemetry with Data Streaming at Rivian

Rivian and Volkswagen, through their joint venture RV Tech, process high-frequency telemetry from connected vehicles…

2 weeks ago

Etihad Airways Makes Airline Operations Real-Time with Data Streaming

Airlines face constant pressure to deliver reliable service while managing complex operations and rising customer…

3 weeks ago

Stream Processing on the Mainframe with Apache Flink: Genius or a Glitch in the Matrix?

Running Apache Flink on a mainframe may sound surprising, but it is already happening and…

1 month ago

10 FinTech Predictions That Depend on Real Time Data Streaming

Financial services companies are moving from batch processing to real time data flow. A data…

1 month ago