Comparison of Stream Processing Frameworks and Products

See how products, libraries, and frameworks that full under ‘streaming data analytics’ use cases are categorized and compared.

Streaming Analytics processes data in real time while it is in motion. This concept and technology emerged several years ago in financial trading, but it is growing increasingly important these days due to digitalization and Internet of Things (IoT). The following slide deck from a recent talk at a conference covers:

  • Real world success stories from different industries (Manufacturing, Retailing, Sports)
  • Alternative Frameworks and Products for Stream Processing
  • Complementary Relationship to Data Warehouse, Apache Hadoop, Statistics, Machine Learning, Open Source R, SAS, Matlab, etc.

Stream Processing Frameworks and Products

The following picture shows the key differences between frameworks (no matter if open source such as Apache Storm, Apache Flink, Apache Spark or closed source such as Amazon Kinesis) and products (such as TIBCO StreamBase / Live Datamart, IBM InfoSphere Streams, Software AG’s Apama).

Of course, you can implement everything by writing code and using one or more frameworks. However, besides several other benefits, the key differentiator of using a product is time to market. You can realize projects in weeks instead of months or even years. Delivering quickly is the number one priority of most enterprises these days in a world where the only constant is change!

I recommend that you choose one or two frameworks and one or two products to implement a proof of concept (POC); spend e.g. five days with each one to implement a streaming analytics use case, which includes integration of input feeds or sensors, correlation / sliding windows / patterns, simulation and testing, and a live user interface to monitor and act proactively. At the end, you can compare the results and decide which fits you best.

Fast Data and Streaming Analytics in the Era of Hadoop, R and Apache Spark

The following slide deck discusses the above topics in much more detail:

Click on the button to load the content from www.slideshare.net.

Load content

Parts of this (extensive) slide deck were used for talks at several international conferences such as JavaOne 2015 in San Francisco. I appreciate any feedback about the content to improve it continuously…If you want to learn more about Streaming Analytics and its relation to Big Data and Apache Hadoop, I recommend the following InfoQ article: Real-Time Stream Processing as Game Changer in a Big Data World with Hadoop and Data Warehouse.

Kai Waehner

builds cloud-native event streaming infrastructures for real-time data processing and analytics

Recent Posts

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual.…

3 days ago

IoT and Data Streaming with Kafka for a Tolling Traffic System with Dynamic Pricing

In the rapidly evolving landscape of intelligent traffic systems, innovative software provides real-time processing capabilities,…

2 weeks ago

Fraud Prevention in Under 60 Seconds with Apache Kafka: How A Bank in Thailand is Leading the Charge

In the fast-paced world of finance, the ability to prevent fraud in real-time is not…

3 weeks ago

When to Choose Apache Kafka vs. Azure Event Hubs vs. Confluent Cloud for a Microsoft Fabric Lakehouse

Choosing between Apache Kafka, Azure Event Hubs, and Confluent Cloud for data streaming is critical…

4 weeks ago

How Microsoft Fabric Lakehouse Complements Data Streaming (Apache Kafka, Flink, et al.)

In today's data-driven world, understanding data at rest versus data in motion is crucial for…

1 month ago

What is Microsoft Fabric for Azure Cloud (Beyond the Buzz) and how it Competes with Snowflake and Databricks

If you ask your favorite large language model, Microsoft Fabric appears to be the ultimate…

1 month ago