Comparison Of Log Analytics for Distributed Microservices – Open Source Frameworks, SaaS and Enterprise Products

I had two sessions at O’Reilly Software Architecture Conference in London in October 2016. It is the first #OReillySACon in London. A very good organized conference with plenty of great speakers and sessions. I can really recommend this conference and its siblings in other cities such as San Francisco or New York if you want to learn about good software architectures and new concepts, best practices and technologies. Some of the hot topics this year besides microservices are DevOps, serverless architectures and big data analytics.

I want to share the slide of my session about comparing open source frameworks, SaaS and Enterprise products regarding log analytics for distributed microservices:

Monitoring Distributed Microservices with Log Analytics

IT systems and applications generate more and more distributed machine data due to millions of mobile devices, Internet of Things, social network users, and other new emerging technologies. However, organizations experience challenges when monitoring and managing their IT systems and technology infrastructure. They struggle with distributed Microservices and Cloud architectures, custom application monitoring and debugging, network and server monitoring / troubleshooting, security analysis, compliance standards, and others.

This session discusses how to solve the challenges of monitoring and analyzing Terabytes and more of different distributed machine data to leverage the “digital business”. The main part of the session compares different open source frameworks and SaaS cloud solutions for Log Management and operational intelligence, such as Graylog , the “ELK stack”, Papertrail, Splunk or TIBCO LogLogic). A live demo will demonstrate how to monitor and analyze distributed Microservices and sensor data from the “Internet of Things”.

The session also explains the distinction of the discussed solutions to other big data components such as Apache Hadoop, Data Warehouse or Machine Learning and its application to real time processing, and how they can complement each other in a big data architecture.

The session concludes with an outlook to the new, advanced concept of IT Operations Analytics (ITOA).

Slide Deck from O’Reilly Software Architecture Conference

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

The Top 20 Problems with Batch Processing (and How to Fix Them with Data Streaming)

Batch processing introduces delays, complexity, and data quality issues that modern businesses can no longer…

24 hours ago

Replacing Legacy Systems, One Step at a Time with Data Streaming: The Strangler Fig Approach

Modernizing legacy systems doesn’t have to mean a risky big-bang rewrite. This blog explores how…

6 days ago

Retail Media with Data Streaming: The Future of Personalized Advertising in Commerce

Retail media is reshaping digital advertising by using first-party data to deliver personalized, timely ads…

2 weeks ago

Modernizing OT Middleware: The Shift to Open Industrial IoT Architectures with Data Streaming

Legacy OT middleware is struggling to keep up with real-time, scalable, and cloud-native demands. As…

2 weeks ago

CIO Summit: The State of AI and Why Data Streaming is Key for Success

The CIO Summit in Amsterdam provided a valuable perspective on the state of AI adoption…

3 weeks ago

Cathay: From Premium Airline to Integrated Travel Ecosystem with Data Streaming

Cathay Pacific is evolving beyond aviation, rebranding as Cathay to offer a seamless travel and…

3 weeks ago