Machine Learning Applied to Microservices

I had two sessions at O’Reilly Software Architecture Conference in London in October 2016. It is the first #OReillySACon in London. A very good organized conference with plenty of great speakers and sessions. I can really recommend this conference and its siblings in other cities such as San Francisco or New York if you want to learn about good software architectures and new concepts, best practices and technologies. Some of the hot topics this year besides microservices are DevOps, serverless architectures and big data analytics respectively machine learning.

Intelligent Microservices by Leveraging Big Data Analytics

One of the two sessions was about how to apply machine learning and big data analytics to real time event processing. I also included the relation to microservices, i.e. how to leverage microservice concepts such as 12 Factor Apps, Containers (e.g. Docker), Cloud Platforms (e.g. Kubernetes, Cloud Foundry), or DevOps to build agile, intelligent microservices.

Abstract: How to Apply Machine Learning to Microservices

The digital transformation is going forward due to Mobile, Cloud and Internet of Things. Disrupting business models leverage Big Data Analytics and Machine Learning.

“Big Data” is currently a big hype. Large amounts of historical data are stored in Hadoop or other platforms. Business Intelligence tools and statistical computing are used to draw new knowledge and to find patterns from this data, for example for promotions, cross-selling or fraud detection. The key challenge is how these findings can be integrated from historical data into new transactions in real time to make customers happy, increase revenue or prevent fraud. “Fast Data” via stream processing is the solution to embed patterns – which were obtained from analyzing historical data – into future transactions in real-time.

This session uses several real world success stories to explain the concepts behind stream processing and its relation to Hadoop and other big data platforms.  It discusses how patterns and statistical models of R, Spark MLlib, H2O, and other technologies can be integrated into real-time processing by using several different real world case studies. The session also points out why a Microservices architecture helps solving the agile requirements for these kind of projects.

A brief overview of available open source frameworks and commercial products shows possible options for the implementation of stream processing, such as Apache Storm, Apache Flink, Spark Streaming, IBM InfoSphere Streams, or TIBCO StreamBase.

A live demo shows how to implement stream processing, how to integrate machine learning, and how human operations can be enabled in addition to the automatic processing via a Web UI and push events.

How to Build Intelligent Microservices – Slide Deck from O’Reilly Software Architecture Conference

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

FinOps in Real Time: How Data Streaming Transforms Cloud Cost Management

FinOps bridges the gap between finance and engineering to control cloud spend in real time.…

1 hour ago

Unified Namespace vs. Data Product in IT/OT for Industrial IoT

Industrial companies are connecting machines, sensors, and enterprise systems like never before. Real-time data, cloud-native…

2 days ago

Open RAN and Data Streaming: How the Telecom Industry Modernizes Network Infrastructure with Apache Kafka and Flink

Open RAN is transforming telecom by decoupling hardware and software to unlock flexibility, innovation, and…

1 week ago

Agentic AI and RAG in Regulated FinTech with Apache Kafka at Alpian Bank

Regulated FinTech is transforming financial services by combining compliance with innovation. This post explores how…

1 week ago

How MPL Uses Data Streaming to Lead in Mobile Gaming and eSports

Mobile Premier League (MPL) is a leading mobile eSports skill-based gaming platform with over 90…

2 weeks ago

Mainframe Integration with Data Streaming: Architecture, Business Value, Real-World Success

The mainframe is evolving—not fading. With cloud-native features, AI acceleration, and quantum-safe encryption, platforms like…

3 weeks ago