Case Study: From a Monolith to Cloud, Containers, Microservices

The following shows a case study about successfully moving from a very complex monolith system to a cloud-native architecture. The architecture leverages containers and Microservices. This solve issues such as high efforts for extending the system, and a very slow deployment process. The old system included a few huge Java applications and a complex integration middleware deployment.

The new architecture allows flexible development, deployment and operations of business and integration services. Besides, it is vendor-agnostic so that you can leverage on-premise hardware, different public cloud infrastructures, and cloud-native PaaS platforms.

The session will describe the challenges of the existing monolith system, the step-by-step procedure to move to the new cloud-native Microservices architecture. It also explains why containers such as Docker play a key role in this scenario.

A live demo shows how container solutions such as Docker, PaaS cloud platforms such as CloudFoundry, cluster managers such as Kubernetes or Mesos, and different programming languages are used to implement, deploy and scale cloud-native Microservices in a vendor-agnostic way.

Key Takeaways

Key takeaways for the audience:

– Best practices for moving to a cloud-native architecture

– How to leverage microservices and containers for flexible development, deployment and operations

– How to solve challenges in real world projects

– Understand key technologies, which are recommended

– How to stay vendor-agnostic

– See a live demo of how cloud-native applications respectively services differ from monolith applications regarding development and runtime

Slides and Video from Microservices Meetup Mumbai

Here are the slides and video recording. Presented in February 2017 at Microservices Meetup Mumbai, India.

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

builds cloud-native event streaming infrastructures for real-time data processing and analytics

Recent Posts

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual.…

3 days ago

IoT and Data Streaming with Kafka for a Tolling Traffic System with Dynamic Pricing

In the rapidly evolving landscape of intelligent traffic systems, innovative software provides real-time processing capabilities,…

2 weeks ago

Fraud Prevention in Under 60 Seconds with Apache Kafka: How A Bank in Thailand is Leading the Charge

In the fast-paced world of finance, the ability to prevent fraud in real-time is not…

3 weeks ago

When to Choose Apache Kafka vs. Azure Event Hubs vs. Confluent Cloud for a Microsoft Fabric Lakehouse

Choosing between Apache Kafka, Azure Event Hubs, and Confluent Cloud for data streaming is critical…

4 weeks ago

How Microsoft Fabric Lakehouse Complements Data Streaming (Apache Kafka, Flink, et al.)

In today's data-driven world, understanding data at rest versus data in motion is crucial for…

1 month ago

What is Microsoft Fabric for Azure Cloud (Beyond the Buzz) and how it Competes with Snowflake and Databricks

If you ask your favorite large language model, Microsoft Fabric appears to be the ultimate…

1 month ago