Kafka Streams + H2O.ai + TensorFlow (Video Recording / Live Demo)

I do a lot of presentations these days at meetups and conferences with one focus: How to leverage Apache Kafka and Kafka Streams to apply analytic models (built with H2O, TensorFlow, DeepLearning4J and other frameworks) to scalable, mission-critical environments. As many attendees have asked me, I created a video recording about this talk (focusing on live demos).

I also see many Confluent customers talking about their challenges to deploy analytic models to a mission-critical, scalable production environment. This is a completely different story than “just” developing a great, accurate model in R or Python. Educating them how Apache Kafka and Kafka Streams can help here is a key task for me these days… 🙂 This leads to many very interesting and disrupting use cases! I will blog more about this in the next months. For example, I will show an example where I train a neural networks with the concept of autoencoders to build analytic models. Some use cases for this: Anomaly detection for predictive maintenance, fraud, customer churn, etc. These neural networks will then be deployed and monitored with Apache Kafka and its Streams API.

Abstract of the Session: Apache Kafka + Machine Learning

Intelligent real time applications are a game changer in any industry. This session explains how companies from different industries build intelligent real time applications. The first part of this session explains how to build analytic models with R, Python or Scala. No matter which language you favor, you can leverage open source machine learning / deep learning frameworks like TensorFlow, DeepLearning4J or H2O.ai. The second part discusses the deployment of these built analytic models to your own applications or microservices. Here you leverage the Apache Kafka cluster and Kafka’s Streams API instead of setting up a new, complex stream processing cluster. The session focuses on live demos. It also teaches lessons learned for executing analytic models in a highly scalable, mission-critical and performant way.

Key Takeaways for the Audience

  • Insights are hidden in Historical Data, e.g. on Big Data Platforms such as Hadoop
  • Machine Learning and Deep Learning find these Insights by building Analytics Models
  • Stream Processing uses these Models (without Redeveloping) to act in Real Time
  • See different open source frameworks for Machine Learning and Stream Processing like TensorFlow, DeepLearning4J or H2O.ai to build analytic models
  • Apache Kafka, its Streams API and Machine Learning can be combined to build, apply and monitor analytic models
  • Understand how to leverage Kafka Streams to use analytic models in your own streaming microservices. Learn best practices for building and deploying analytic models in real time leveraging the open source Apache Kafka Streams platform

Code Examples on Github (Java, Kafka Streams, TensorFlow, H2O.ai)

You can find the Java code examples and analytic models for H2O and TensorFlow in my Github project.

Just clone the repository and run “maven clean package”. Then take a look at the Unit Tests to understand how to apply analytic models with Apache Kafka’s Streams API.

Video Recoding: Apache Kafka + Kafka Streams + H2O.ai + TensorFlow

Finally, here we go with the video recording:

As always, I appreciate any comments (feedback, questions, criticism)… Have fun watching the video.

You can also see a corresponding slide deck:

Click on the button to load the content from www.slideshare.net.

Load content

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Online Feature Store for AI and Machine Learning with Apache Kafka and Flink

Real-time personalization requires more than just smart models. It demands fresh data, fast processing, and…

2 hours ago

How Data Streaming Powers AI and Autonomous Networks in Telecom – Insights from TM Forum Innovate Americas

AI and autonomous networks took center stage at TM Forum Innovate Americas 2025 in Dallas.…

3 days ago

Telecom OSS Modernization with Data Streaming: From Legacy Burden to Cloud-Native Agility

OSS is critical for service delivery in telecom, yet legacy platforms have become rigid and…

6 days ago

Amazon MSK Forces a Kafka Cluster Migration from ZooKeeper to KRaft

The Apache Kafka community introduced KIP-500 to remove ZooKeeper and replace it with KRaft, a…

1 week ago

Streaming the Automotive Future: Real-Time Infrastructure for Vehicle Data

Connected vehicles are transforming the automotive industry into a software-driven, data-centric ecosystem. While APIs provide…

2 weeks ago

How Global Payment Processors like Stripe and PayPal Use Data Streaming to Scale

This blog post explores how leading payment processors like Stripe, PayPal, Payoneer, and Worldline are…

3 weeks ago