Deep Learning in Real Time with TensorFlow, H2O.ai and Kafka Streams (Slides from JavaOne 2017)

Early October… Like every year in October, it is time for JavaOne and Oracle Open World in San Francisco… I am glad to be back at this huge event again. My talk at JavaOne 2017 was all about deployment of analytic models to scalable production systems leveraging Apache Kafka and Kafka Streams. Let’s first look at the abstract. After that I attach the slides and refer to further material around this topic.

Abstract “Deep Learning in Real Time with TensorFlow, H2O.ai and Kafka Streams”

Intelligent real time applications are a game changer in any industry. Deep Learning is one of the hottest buzzwords in this area. New technologies like GPUs combined with elastic cloud infrastructure enable the sophisticated usage of artificial neural networks to add business value in real world scenarios. Tech giants use it e.g. for image recognition and speech translation. This session discusses some real-world scenarios from different industries to explain when and how traditional companies can leverage deep learning in real time applications.

This session shows how to deploy Deep Learning models into real time applications to do predictions on new events. Apache Kafka will be used to inter analytic models in a highly scalable and performant way.

The first part introduces the use cases and concepts behind Deep Learning. It discusses how to build Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Autoencoders leveraging open source frameworks like TensorFlow, DeepLearning4J or H2O.

The second part shows how to deploy the built analytic models to real time applications leveraging Apache Kafka as streaming platform and Apache Kafka’s Streams API to embed the intelligent business logic into any external application or microservice.

Key Takeaways for the Audience: Kafka Streams + Deep Learning

Here are the takeaways of this talk:

  • Focus of this talk is to discuss and show how to productionize analytic models built by data scientists – the key challenge in most companies.
  • Deep Learning allows to build different neural networks to solve complex classification and regression scenarios and can add business value in any industry
  • Deep Learning is used to build analytics models using open source frameworks like TensorFlow, DeepLearning4J or H2O.ai.
  • Apache Kafka’s Streams API allows to embed the intelligent business logic into any application or microservice
  • Apache Kafka’s Streams API leverages these Deep Learning Models (without Redeveloping) to act on new events in real time

Slides and Further Material around Apache Kafka and Machine Learning

Here are the slides of my talk:

Click on the button to load the content from www.slideshare.net.

Load content

Some further material around Apache Kafka, Kafka Streams and Machine Learning:

I will post more examples and use cases around Apache Kafka and Machine Learning in the upcoming months… Stay tuned!

Kai Waehner

builds cloud-native event streaming infrastructures for real-time data processing and analytics

Recent Posts

How Siemens Healthineers Leverages Data Streaming with Apache Kafka and Flink in Manufacturing and Healthcare

Siemens Healthineers, a global leader in medical technology, delivers solutions that improve patient outcomes and…

1 day ago

My Road to Lufthansa HON Circle Status in 2025

Discover my journey to achieving Lufthansa HON Circle (Miles & More) status in 2025. Learn…

5 days ago

The Data Streaming Landscape 2025

Data streaming is a new software category. It has grown from niche adoption to becoming…

2 weeks ago

Top Trends for Data Streaming with Apache Kafka and Flink in 2025

Apache Kafka and Apache Flink are leading open-source frameworks for data streaming that serve as…

2 weeks ago

Data Streaming in Healthcare and Pharma: Use Cases and Insights from Cardinal Health

This blog delves into Cardinal Health’s journey, exploring how its event-driven architecture and data streaming…

3 weeks ago

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual.…

1 month ago