I am happy that my first official Confluent blog post was published and want to link to it from by blog:
How to Build and Deploy Scalable Machine Learning in Production with Apache Kafka
The post explains in detail how you can leverage Apache Kafka and its Streams API to deploy analytic models to a lightweight, but scalable, mission-critical streaming appilcation.
If you want to take a look directly at the source code, go to my Github project about Kafka + Machine Learning. It contains several examples how to combine Kafka Streams with frameworks like TensorFlow, H2O or DeepLearning4J.
Tesla’s Virtual Power Plant (VPP) turns thousands of home batteries, solar panels, and energy storage…
The financial industry is rapidly shifting toward real-time, intelligent, and seamlessly integrated services. From IoT…
Real-time data is no longer optional—it’s essential. Businesses across industries use data streaming to power…
Low-code/no-code tools have revolutionized software development and data engineering by providing visual interfaces that empower…
In today’s digital landscape, cybersecurity faces mounting challenges from sophisticated threats like ransomware, phishing, and…
The cloud revolution has reshaped how businesses deploy and manage data streaming with solutions like…