Rethinking Stream Processing with Apache Kafka, Kafka Streams and KSQL

I presented at JavaLand 2018 in Brühl recently. A great developer conference with over 1800 attendees. The location is also awesome! A theme park: Phantasialand. My talk: “New Era of Stream Processing with Apache Kafka’s Streams API and KSQL“. Just want to share the slide deck…

Kai Speaking at JavaLand 2018 about Kafka Streams and KSQL

Abstract

Stream Processing is a concept used to act on real-time streaming data. This session shows and demos how teams in different industries leverage the innovative Streams API from Apache Kafka to build and deploy mission-critical streaming real time application and microservices.

The session discusses important Streaming concepts like local and distributed state management, exactly once semantics, embedding streaming into any application, deployment to any infrastructure. Afterwards, the session explains key advantages of Kafka’s Streams API like distributed processing and fault-tolerance with fast failover, no-downtime rolling deployments and the ability to reprocess events so you can recalculate output when your code changes.

A demo shows how to combine any custom code with your streams application – by an example using an analytic model built with any machine learning framework like Apache Spark ML or TensorFlow.

The end of the session introduces KSQL – the open source Streaming SQL Engine for Apache Kafka. Write “simple” SQL streaming queries with the scalability, throughput and fail-over of Kafka Streams under the hood.

Slide Deck

Here we go:

Click on the button to load the content from www.slideshare.net.

Load content

 

Dont‘ miss my next post. Subscribe!

We don’t spam! Read our privacy policy for more info.
If you have issues with the registration, please try a private browser tab / incognito mode. If it doesn't help, write me: kontakt@kai-waehner.de

You May Also Like
How to do Error Handling in Data Streaming
Read More

Error Handling via Dead Letter Queue in Apache Kafka

Recognizing and handling errors is essential for any reliable data streaming pipeline. This blog post explores best practices for implementing error handling using a Dead Letter Queue in Apache Kafka infrastructure. The options include a custom implementation, Kafka Streams, Kafka Connect, the Spring framework, and the Parallel Consumer. Real-world case studies show how Uber, CrowdStrike, Santander Bank, and Robinhood build reliable real-time error handling at an extreme scale.
Read More