KSQL Deep Dive – The Open Source Streaming SQL Engine for Apache Kafka

KSQL is the open source, Apache 2.0 licensed streaming SQL engine on top of Apache Kafka. This post shows a deep dive (slides + video recording) including its relation to Kafka Connect and Kafka Streams, concepts, architecture and deployment options.

I had a workshop at Kafka Meetup Tel Aviv in May 2018: “KSQL Deep Dive – The Open Source Streaming SQL Engine for Apache Kafka“.

Here are the agenda, slides and video recording.

KSQL – The Open Source Streaming SQL Engine for Apache Kafka

KSQL is the open-source, Apache 2.0 licensed streaming SQL engine on top of Apache Kafka which aims to simplify all this and make stream processing available to everyone. Even though it is simple to use, KSQL is built for mission-critical and scalable production deployments (using Kafka Streams under the hood).
Benefits of using KSQL include No coding required; no additional analytics cluster needed; streams and tables as first-class constructs; access to the rich Kafka ecosystem. This session introduces the concepts and architecture of KSQL. Use cases such as Streaming ETL, Real-Time Stream Monitoring or Anomaly Detection are discussed. A live demo shows how to setup and use KSQL quickly and easily on top of your Kafka ecosystem.

If you want to get started, try out the KSQL quick start guide. It get’s you started in 10min locally on your laptop or alternatively in a Docker environment.

History of Apache Kafka, Confluent, and KSQL

Agenda

  1. Apache Kafka Ecosystem
  2. Kafka Streams as Foundation for KSQL
  3. Motivation for KSQL
  4. KSQL Concepts
  5. Live Demo #1 – Intro to KSQL
  6. KSQL Architecture
  7. Live Demo #2 – Clickstream Analysis
  8. Building a User Defined Function (Example: Machine Learning)
  9. Getting Started

Slides

Click on the button to load the content from www.slideshare.net.

Load content

Video Recording

There was a Youtube live stream. Unfortunately, we had some technical problems. So the audio of the first half is not really good. Sorry for that. I still want to share it. The second half has good sounds quality:

YouTube

By loading the video, you agree to YouTube’s privacy policy.
Learn more

Load video

Looking forward to get your feedback. Also please feel free to ask questions in the Confluent Slack community (where you can also get help from the engineers of KSQL) or create Github tickets if you have problems or contributions to this great open source project.

Dont‘ miss my next post. Subscribe!

We don’t spam! Read our privacy policy for more info.
If you have issues with the registration, please try a private browser tab / incognito mode. If it doesn't help, write me: kontakt@kai-waehner.de

Leave a Reply
You May Also Like
How to do Error Handling in Data Streaming
Read More

Error Handling via Dead Letter Queue in Apache Kafka

Recognizing and handling errors is essential for any reliable data streaming pipeline. This blog post explores best practices for implementing error handling using a Dead Letter Queue in Apache Kafka infrastructure. The options include a custom implementation, Kafka Streams, Kafka Connect, the Spring framework, and the Parallel Consumer. Real-world case studies show how Uber, CrowdStrike, Santander Bank, and Robinhood build reliable real-time error handling at an extreme scale.
Read More