Data Streaming

How Data Streaming and AI Help Telcos to Innovate: Top 5 Trends from MWC 2025

The telecommunications and technology industries are at a pivotal moment. As innovation accelerates, businesses must leverage cutting-edge technologies to stay ahead. For MWC 2025, McKinsey highlighted five crucial themes shaping the future: IT excellence in telecom, sustainability challenges, the evolution of 6G, the rise of generative AI, and AI-driven software development.

MWC (Mobile World Congress) 2025 serves as the global stage where industry leaders, telecom operators, and technology pioneers converge to discuss the next wave of connectivity and digital transformation. As organizations gear up for a data-driven future, real-time data streaming emerges as the critical enabler of efficiency, agility, and value creation.

This blog explores each of McKinsey’s key themes from MWC 2025 and how data streaming helps businesses innovate and gain a competitive advantage in the hyper-connected world ahead.

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And make sure to download my free book about data streaming use cases.

1. IT Excellence: Driving Telecom Innovation and Cost Efficiency

Telecom operators are under immense pressure to monetize massive infrastructure investments while maintaining cost efficiency. McKinsey’s benchmarking study shows that leading telecom tech players spend less on IT while achieving superior cost efficiency and innovation. Successful operators integrate business and IT transformations holistically, optimizing cloud strategies, IT architectures, and AI-driven processes.

How Data Streaming Powers IT Excellence

  • Real-Time IT Monitoring: Streaming data pipelines provide continuous observability into IT performance, reducing downtime and optimizing infrastructure costs.
  • Automated Network Operations: Event-driven architectures allow operators to dynamically allocate resources, minimizing network congestion and improving service quality.
  • Cloud-Native AI Models: By continuously feeding AI models with live data, telecom leaders ensure optimal network performance and predictive maintenance.

🔹 Business Impact: Faster time-to-market, lower IT costs, and improved network reliability.

A great example of this transformation is Dish Wireless, which built a fully cloud-native, software-driven 5G network powered by Apache Kafka. By leveraging real-time data streaming, Dish ensures low-latency, scalable, and event-driven operations, allowing it to optimize network performance, automate infrastructure management, and provide next-generation connectivity for enterprise applications.

Dish’s data-first approach demonstrates how streaming technologies are redefining telecom infrastructure and unlocking new business models.

📌 Read more about how Apache Kafka powers Dish Wireless’ 5G infrastructure or watch the following webinar with Dish:

 

2. Tackling Telecom Emissions: A Sustainable Future

The telecom industry faces increasing regulatory pressure and consumer expectations to decarbonize operations. While many companies have reduced Scope 1 (direct emissions) and Scope 2 (energy consumption) emissions, the real challenge lies in Scope 3 emissions from supply chains. McKinsey’s research suggests that 60% of an integrated operator’s emissions can be reduced for less than $100 per ton of CO₂.

How Data Streaming Supports Sustainability Efforts

  • Energy Optimization in Real Time: Streaming analytics continuously monitor energy usage across network infrastructure, automatically adjusting power consumption.
  • Carbon Footprint Tracking: Data pipelines aggregate real-time emissions data, enabling operators to meet sustainability goals efficiently.
  • Predictive Maintenance for Energy Efficiency: AI-driven insights help optimize network hardware lifespan, reducing waste and unnecessary energy consumption.

🔹 Business Impact: Reduced carbon footprint, cost savings on energy consumption, and regulatory compliance.

Beyond telecom, data streaming is transforming sustainability efforts across industries. For example, in manufacturing and real estate, companies like Ampeers Energy and PAUL Tech AG use Apache Kafka and Flink to optimize energy distribution, reduce emissions, and improve ESG ratings.

These real-time data platforms analyze IoT sensor data, weather forecasts, and energy consumption patterns to automate decision-making and lower energy waste. Similarly, EverySens leverages streaming data to decarbonize freight transport, eliminating hundreds of thousands of unnecessary truck rides each year. These use cases demonstrate how data-driven sustainability strategiescan be scaled across sectors to achieve meaningful environmental impact.

📌 Read more about how data streaming with Kafka and Flink power ESG transformations.

3. Shaping the Future of 6G: Beyond Connectivity

6G is expected to revolutionize industries by enabling ultra-low latency, ubiquitous connectivity, and AI-driven network optimization. However, the transition from 5G to 6G requires overcoming legacy infrastructure challenges and developing multi-capability platforms that go beyond simple connectivity.

How Data Streaming Powers the 6G Revolution

  • Network Sensing and Intelligent Routing: Streaming architectures process real-time network telemetry, enabling adaptive, self-optimizing networks.
  • AI-Enhanced Edge Computing: Real-time analytics ensure minimal latency for mission-critical applications such as autonomous vehicles and smart cities.
  • Cross-Sector Data Monetization: Operators can leverage streaming data to offer network-as-a-service (NaaS) solutions, opening new revenue streams.

🔹 Business Impact: New monetization opportunities, improved network efficiency, and enhanced customer experience.

Source: Dish Wireless

As the 6G era approaches, real-time data streaming is already proving its value in 5G deployments, unlocking low-latency, high-bandwidth use cases.

A great example is Verizon’s Mobile Edge Computing (MEC) initiative, which uses data streaming and AI-powered analytics to support real-time applications like autonomous drone monitoring, vehicle-to-everything (V2X) communication, and predictive maintenance in industrial settings. By processing data at the network edge, telcos minimize latency and optimize bandwidth—capabilities that will be even more critical in 6G.

With cloud-native, event-driven architectures, data streaming enables telcos to evolve from traditional connectivity providers to technology leaders. As 6G advances, expect faster network automation, more sophisticated AI integration, and deeper partnerships between telecom operators and enterprise customers.

📌 Read more about how data streaming is shaping the future of telco.

4. Generative AI: A Profitability Game-Changer for Telcos

McKinsey highlights generative AI’s potential to boost telco profitability by up to 10% in annual EBITDA through automation, hyper-personalization, and AI-driven customer engagement. Leading telcos are already leveraging AI to improve customer service, marketing, and network operations.

How Data Streaming Enhances Gen AI in Telecom

  • Real-Time Customer Insights: AI-powered recommendation engines deliver personalized offers and dynamic pricing in milliseconds.
  • Automated Call Center Operations: Real-time transcription and sentiment analysis improve chatbot accuracy and agent productivity.
  • Proactive Network Management: AI models trained on continuous streaming data predict and prevent network failures before they occur.

🔹 Business Impact: Higher customer satisfaction, reduced operational costs, and increased revenue per user.

As telecom providers integrate Generative AI (GenAI) into their business models, real-time data streaming is a foundational technology that enables efficient AI inference and model retraining. One compelling example is the GenAI Demo with Kafka, Flink, LangChain, and OpenAI, which illustrates how streaming architectures power AI-driven sales and customer interactions.

This demo showcases how real-time CRM data from Salesforce is enriched with web and LinkedIn data via streaming ETL using Apache Flink. Then, AI models process this context using LangChain and OpenAI, generating personalized, context-specific sales recommendations—a workflow that can be extended to telecom call centers and customer engagement platforms.

Expedia’s success story further highlights how GenAI combined with data streaming improves customer interactions. Facing a massive surge in support requests during COVID-19, Expedia automated responses with AI-driven chatbots, significantly reducing agent workloads. By integrating Apache Kafka with AI models, 60% of travelers began self-servicing their inquiries, resulting in over 40% cost savings in customer support operations.

Source: Confluent

For telecom providers, similar AI-driven automation can optimize call centers, personalized customer offers, fraud detection, and even predictive maintenance for network infrastructure. Data streaming ensures that AI models continuously learn from fresh data, making GenAI solutions more accurate, responsive, and cost-effective.

5. AI-Driven Software Development: Faster, Smarter, Better

AI is fundamentally transforming software development, accelerating the product development lifecycle (PDLC) and improving product quality. AI-assisted coding, automated testing, and real-time feedback loops are enabling companies to deliver customer-centric solutions at unprecedented speed.

How Data Streaming Transforms AI-Driven Software Development

  • Continuous Feedback and Iteration: Streaming analytics provide instant feedback from user behavior, enabling faster iterations and bug fixes.
  • Automated Code Quality Checks: AI-driven continuous integration (CI/CD) pipelines validate new code in real-time, ensuring seamless software deployments.
  • Live Performance Monitoring: Streaming data enables real-time anomaly detection, ensuring optimal application performance.

🔹 Business Impact: Faster time-to-market, higher software reliability, and reduced development costs.

For telecom providers, AI-driven software development is key to maintaining a reliable, scalable, and secure network infrastructure while rolling out new customer-facing services at speed. Data streaming accelerates software development by enabling real-time feedback loops, automated testing, and AI-powered observability—bringing the industry closer to a true “Shift Left” approach.

The Shift Left Architecture in software development means moving testing, security, and quality assurance earlier in the development lifecycle, reducing costly errors and vulnerabilities late in production. Data streaming enables this shift by continuously feeding AI-driven CI/CD pipelines with real-time insights, allowing developers to detect issues earlier, optimize network performance, and iterate faster on new services.

A relevant AI-powered automation example comes from the GenAI for Development vs. Visual Coding article, which discusses how automation is shifting from traditional code-based development to AI-assisted software engineering. Instead of manual coding, AI-driven workflows help telcos streamline DevOps, automate CI/CD pipelines, and enhance software quality in real time.

For telecom providers, this transformation means proactive issue detection, faster rollouts of network upgrades, and automated AI-driven security monitoring—all powered by real-time data streaming and a Shift Left mindset.

Data Streaming as the Ultimate Competitive Advantage for Telcos

Across all five of McKinsey’s key trends, real-time data streaming is the backbone of transformation. Whether optimizing IT efficiency, reducing emissions, unlocking 6G’s potential, enabling generative AI and Agentic AI, or accelerating software development, streaming technologies provide the agility and intelligence businesses need to win in 2025 and beyond.

The path forward isn’t just about adopting AI or cloud-native infrastructure—it’s about embracing real-time, event-driven architectures to drive innovation at scale.

As organizations take bold steps to lead the future, those who harness the power of data streaming will emerge as the industry’s true pioneers.

Stay ahead of the curve! Subscribe to my newsletter for insights into data streaming and connect with me on LinkedIn to continue the conversation. And make sure to download my free book about data streaming use cases.

Kai Waehner

bridging the gap between technical innovation and business value for real-time data streaming, processing and analytics

Recent Posts

Data Streaming as the Technical Foundation for a B2B Marketplace

A B2B data marketplace empowers businesses to exchange, monetize, and leverage real-time data through self-service…

4 days ago

Data Streaming with Apache Kafka and Flink in the Media Industry: Disney+ Hotstar and JioCinema

The $8.5 billion merger of Disney+ Hotstar and Reliance’s JioCinema marks a transformative moment for…

1 week ago

Online Model Training and Model Drift in Machine Learning with Apache Kafka and Flink

The rise of real-time AI and machine learning is reshaping the competitive landscape. Traditional batch-trained…

2 weeks ago

Tesla Energy Platform – The Power of Data Streaming with Apache Kafka

Tesla’s Virtual Power Plant (VPP) turns thousands of home batteries, solar panels, and energy storage…

3 weeks ago

How Data Streaming with Apache Kafka and Flink Drives the Top 10 Innovations in FinServ

The financial industry is rapidly shifting toward real-time, intelligent, and seamlessly integrated services. From IoT…

4 weeks ago

Free Ebook: Data Streaming Use Cases and Industry Success Stories Featuring Apache Kafka and Flink

Real-time data is no longer optional—it’s essential. Businesses across industries use data streaming to power…

1 month ago