CIO Summit: The State of AI and Why Data Streaming is Key for Success

Learnings from the CIO Summit: AI + Data Streaming = Key for Success
The CIO Summit in Amsterdam provided a valuable perspective on the state of AI adoption across industries. While enthusiasm for AI remains high, organizations are grappling with the challenge of turning potential into tangible business outcomes. Key discussions centered on distinguishing hype from real value, the importance of high-quality and real-time data, and the role of automation in preparing businesses for AI integration. A recurring theme was that AI is not a standalone solution—it must be supported by a strong data foundation, clear ROI objectives, and a strategic approach. As AI continues to evolve toward more autonomous, agentic systems, data streaming will play a critical role in ensuring AI models remain relevant, context-aware, and actionable in real time.

This week, I had the privilege of engaging in insightful conversations at the CIO Summit organized by GDS Group in Amsterdam, Netherlands. The event brought together technology leaders from across Europe and industries such as financial services, manufacturing, energy, gaming, telco, and more. The focus? AI – but with a much-needed reality check. While the potential of AI is undeniable, the hype often outpaces real-world value. Discussions at the summit revolved around how enterprises can move beyond experimentation and truly integrate AI to drive business success.

Learnings from the CIO Summit in Amsterdam by GDS Group

Join the data streaming community and stay informed about new blog posts by subscribing to my newsletter and follow me on LinkedIn or X (former Twitter) to stay in touch. And make sure to download my free book about data streaming use cases, industry success stories and business value.

Key Learnings on the State of AI

The CIO Summit in Amsterdam provided a reality check on AI adoption across industries. While excitement around AI is high, success depends on moving beyond the hype and focusing on real business value. Conversations with technology leaders revealed critical insights about AI’s maturity, challenges, and the key factors driving meaningful impact. Here are the most important takeaways.

AI is Still in Its Early Stages – Beware of the Buzz vs. Value

The AI landscape is evolving rapidly, but many organizations are still in the exploratory phase. Executives recognize the enormous promise of AI but also see challenges in implementation, scaling, and achieving meaningful ROI.

The key takeaway? AI is not a silver bullet. Companies that treat it as just another trendy technology risk wasting resources on hype-driven projects that fail to deliver tangible outcomes.

Generative AI vs. Predictive AI – Understanding the Differences

There was a lot of discussion about Generative AI (GenAI) vs. Predictive AI, two dominant categories that serve very different purposes:

  • Predictive AI analyzes historical and real-time data to forecast trends, detect anomalies, and automate decision-making (e.g., fraud detection, supply chain optimization, predictive maintenance).
  • Generative AI creates new content based on trained data (e.g., text, images, or code), enabling applications like automated customer service, software development, and marketing content generation.

While GenAI has captured headlines, Predictive AI remains the backbone of AI-driven automation in enterprises. CIOs must carefully evaluate where each approach adds real business value.

Good Data Quality is Non-Negotiable

A critical takeaway: AI is only as good as the data that fuels it. Poor data quality leads to inaccurate AI models, bad predictions, and failed implementations.

To build trustworthy and effective AI solutions, organizations need:

Accurate, complete, and well-governed data

Real-time and historical data integration

Continuous data validation and monitoring

Context Matters – AI Needs Real-Time Decision-Making

Many AI use cases rely on real-time decision-making. A machine learning model trained on historical data is useful, but without real-time context, it quickly becomes outdated.

For example, fraud detection systems need to analyze real-time transactions while comparing them to historical behavioral patterns. Similarly, AI-powered supply chain optimization depends on up-to-the-minute logistics datarather than just past trends.

The conclusion? Real-time data streaming is essential to unlocking AI’s full potential.

Automate First, Then Apply AI

One common theme among successful AI adopters: Optimize business processes before adding AI.

Organizations that try to retrofit AI onto inefficient, manual processes often struggle with adoption and ROI. Instead, the best approach is:

1️⃣ Automate and optimize workflows using real-time data

2️⃣ Apply AI to enhance automation and improve decision-making

By taking this approach, companies ensure that AI is applied where it actually makes a difference.

ROI Matters – AI Must Drive Business Value

CIOs are under pressure to deliver business-driven, NOT tech-driven AI projects. AI initiatives that lack a clear ROI roadmap often stall after pilot phases.

Two early success stories for Generative AI stand out:

  • Customer support – AI chatbots and virtual assistants enhance response times and improve customer experience.
  • Software engineering – AI-powered code generation boosts developer productivity and reduces time to market.

The lesson? Start with AI applications that deliver clear, measurable business impact before expanding into more experimental areas.

Data Streaming and AI – The Perfect Match

At the heart of AI’s success is data streaming. Why? Because modern AI requires a continuous flow of fresh, real-time data to make accurate predictions and generate meaningful insights.

Data streaming not only powers AI with real-time insights but also ensures that AI-driven decisions directly translate into measurable business value:

Business Value of Data Streaming with Apache Kafka and Flink in the free Confluent eBook

Here’s how data streaming powers both Predictive and Generative AI:

Predictive AI + Data Streaming

Predictive AI thrives on timely, high-quality data. Real-time data streaming enables AI models to process and react to events as they happen. Examples include:

✔️ Fraud detection: AI analyzes real-time transactions to detect suspicious activity before fraud occurs.

✔️ Predictive maintenance: Streaming IoT sensor data allows AI to predict equipment failures before they happen.

✔️ Supply chain optimization: AI dynamically adjusts logistics routes based on real-time disruptions.

Here is an example from Capital One bank about fraud detection and prevention in real-time, preventing $150 of fraud on average a year/customer:

Predictive AI for Fraud Detection and Prevention at Capital One Bank with Data Streaming
Source: Confluent

Generative AI + Data Streaming

Generative AI also benefits from real-time data. Instead of relying on static datasets, streaming data enhances GenAI applications by incorporating the latest information:

✔️ AI-powered customer support: Chatbots analyze live customer interactions to generate more relevant responses.

✔️ AI-driven marketing content: GenAI adapts promotional messaging in real-time based on customer engagement signals.

✔️ Software development acceleration: AI assistants provide real-time code suggestions as developers write code.

In short, without real-time data, AI is limited to outdated insights.

Here is an example for GenAI with data streaming in the travel Industry by Expedia where 60% of travelers are self-servicing in chat, saving 40+% of variable agent cost:

Generative AI at Expedia in Travel for Customer Service with Chatbots, GenAI and Data Streaming
Source: Confluent

The Future of AI: Agentic AI and the Role of Data Streaming

As AI evolves, we are moving toward Agentic AI – systems that autonomously take actions, learn from feedback, and adapt in real time.

For example:

AI-driven cybersecurity systems that detect and respond to threats instantly

Autonomous supply chains that dynamically adjust based on demand shifts

Intelligent business operations where AI continuously optimizes workflows

But Agentic AI can only work if it has access to real-time operational AND analytical data. That’s why data streaming is becoming a critical foundation for the next wave of AI innovation.

The Path to AI Success

The CIO Summit reinforced one key message: AI is here to stay, but its success depends on strategy, data quality, and business value – not just hype.

Organizations that:

Focus on AI applications with clear business ROI

Automate before applying AI

Prioritize real-time data streaming

… will be best positioned to drive AI success at scale.

As AI moves towards autonomous decision-making (Agentic AI), data streaming will become even more critical. The ability to process and act on real-time data will separate AI leaders from laggards.

Now the real question: Where is your AI strategy headed? Let’s discuss!

Stay ahead of the curve! Subscribe to my newsletter for insights into data streaming and connect with me on LinkedIn to continue the conversation. And make sure to download my free book focusing on data streaming use cases, industry stories and business value.

Dont‘ miss my next post. Subscribe!

We don’t spam! Read our privacy policy for more info.
If you have issues with the registration, please try a private browser tab / incognito mode. If it doesn't help, write me: kontakt@kai-waehner.de

You May Also Like
How to do Error Handling in Data Streaming
Read More

Error Handling via Dead Letter Queue in Apache Kafka

Recognizing and handling errors is essential for any reliable data streaming pipeline. This blog post explores best practices for implementing error handling using a Dead Letter Queue in Apache Kafka infrastructure. The options include a custom implementation, Kafka Streams, Kafka Connect, the Spring framework, and the Parallel Consumer. Real-world case studies show how Uber, CrowdStrike, Santander Bank, and Robinhood build reliable real-time error handling at an extreme scale.
Read More
Request Response Data Exchange with Apache Kafka vs CQRS and Event Sourcing
Read More

When to use Request-Response with Apache Kafka?

How can I do request-response communication with Apache Kafka? That’s one of the most common questions I get regularly. This blog post explores when (not) to use this message exchange pattern, the differences between synchronous and asynchronous communication, the pros and cons compared to CQRS and event sourcing, and how to implement request-response within the data streaming infrastructure.
Read More