Data Streaming with Apache Kafka and Flink vs Visual Coding with Low-Code No-Code
Read More

Why Generative AI and Data Streaming Are Replacing Visual Coding with Low-Code / No-Code Platforms

Low-code/no-code tools have revolutionized software development and data engineering by providing visual interfaces that empower non-technical users. However, their limitations in scalability, consistency, and integration pose significant challenges in modern, real-time architectures. Generative AI is emerging as a game-changer, offering unprecedented flexibility and customization, addressing many of the pitfalls of traditional low-code/no-code platforms. Simultaneously, the data ecosystem is evolving with Apache Kafka and Flink, enabling real-time, event-driven architectures that resolve inefficiencies of fragmented, batch-driven systems. This blog explores the evolution of low-code/no-code tools, their challenges, when (not) to use visual coding, and how generative AI and data streaming are reshaping the landscape.
Read More
Data Streaming with Apache Kafka and Flink as Backbone for Real Time Cybersecurity at McAfee
Read More

The Role of Data Streaming in McAfee’s Cybersecurity Evolution

In today’s digital landscape, cybersecurity faces mounting challenges from sophisticated threats like ransomware, phishing, and supply chain attacks. Traditional defenses like antivirus software are no longer sufficient, prompting the adoption of real-time, event-driven architectures powered by data streaming technologies like Apache Kafka and Flink. These platforms enable real-time threat detection, prevention, and response by processing massive amounts of security data from endpoints and systems. A success story from McAfee highlights how transitioning to an event-driven architecture with Kafka in Confluent Cloud has enhanced scalability, operational efficiency, and real-time protection for millions of devices. As cybersecurity threats evolve, data streaming proves essential for organizations aiming to secure their digital assets and maintain trust in an interconnected world.
Read More
SaaS vs PaaS Cloud Service for Data Streaming with Apache Kafka and Flink
Read More

Fully Managed (SaaS) vs. Partially Managed (PaaS) Cloud Services for Data Streaming with Kafka and Flink

The cloud revolution has reshaped how businesses deploy and manage data streaming with solutions like Apache Kafka and Flink. Distinctions between SaaS and PaaS models significantly impact scalability, cost, and operational complexity. Bring Your Own Cloud (BYOC) expands the options, giving businesses greater flexibility in cloud deployment. Misconceptions around terms like “serverless” highlight the need for deeper analysis to avoid marketing pitfalls. This blog explores deployment options, enabling informed decisions tailored to your data streaming needs.
Read More
Apache Flink - Overkill for Simple Stateless Stream Processing
Read More

Apache Flink: Overkill for Simple, Stateless Stream Processing and ETL?

Discover when Apache Flink is the right tool for your stream processing needs. Explore its role in stateful and stateless processing, the advantages of serverless Flink SaaS solutions like Confluent Cloud, and how it supports advanced analytics and real-time data integration together with Apache Kafka. Dive into the trade-offs, deployment options, and strategies for leveraging Flink effectively across cloud, on-premise, and edge environments, and when to use Kafka Streams or Single Message Transforms (SMT) within Kafka Connect for ETL instead of Flink.
Read More
Stateless and Stateful Stream Processing with Kafka Streams and Apache Flink
Read More

Stateless vs. Stateful Stream Processing with Kafka Streams and Apache Flink

The rise of stream processing has changed how we handle and act on data. While traditional databases, data lakes, and warehouses are effective for many batch-based use cases, they fall short in scenarios demanding low latency, scalability, and real-time decision-making. This post explores the key concepts of stateless and stateful stream processing, using Kafka Streams and Apache Flink as examples.
Read More
Data Streaming with Apache Kafka and Flink in Healthcare and Manufacturing at Siemens Healthineers
Read More

How Siemens Healthineers Leverages Data Streaming with Apache Kafka and Flink in Manufacturing and Healthcare

Siemens Healthineers, a global leader in medical technology, delivers solutions that improve patient outcomes and empower healthcare professionals. A significant aspect of their technological prowess lies in their use of data streaming to unlock real-time insights and optimize processes. This blog post explores how Siemens Healthineers uses data streaming with Apache Kafka and Flink, their cloud-focused technology stack, and the use cases that drive tangible business value, such as real-time logistics, robotics, SAP ERP integration, AI/ML, and more.
Read More
The Data Streaming Landscape 2025 with Kafka Flink Confluent Amazon MSK Cloudera Event Hubs and Other Platforms
Read More

The Data Streaming Landscape 2025

Data streaming is a new software category. It has grown from niche adoption to becoming a fundamental part of modern data architecture, leveraging open source technologies like Apache Kafka and Flink. With real-time data processing transforming industries, the ecosystem of tools, platforms, and cloud services has evolved significantly. This blog post explores the data streaming landscape of 2025, analyzing key players, trends, and market dynamics shaping this space.
Read More
Data Streaming Trends for 2025 - Leading with Apache Kafka and Flink
Read More

Top Trends for Data Streaming with Apache Kafka and Flink in 2025

Apache Kafka and Apache Flink are leading open-source frameworks for data streaming that serve as the foundation for cloud services, enabling organizations to unlock the potential of real-time data. Over recent years, trends have shifted from batch-based data processing to real-time analytics, scalable cloud-native architectures, and improved data governance powered by these technologies. Looking ahead to 2025, the data streaming ecosystem is set to undergo even greater changes. Here are the top trends shaping the future of data streaming for businesses.
Read More
Dynamic Pricing with Data Streaming using Apache Kafka and Flink
Read More

A New Era in Dynamic Pricing: Real-Time Data Streaming with Apache Kafka and Flink

In the age of digitization, the concept of pricing is no longer fixed or manual. Instead, companies increasingly use dynamic pricing — a flexible model that adjusts prices based on real-time market changes to enable real-time responsiveness, giving companies the tools they need to respond instantly to demand, competitor prices, and customer behaviors. This blog post explores the fundamentals of dynamic pricing, its link to data streaming, and real-world examples across different industries such as retail, logistics, gaming and the energy sector.
Read More
Real-Time AI ML Model Inference Predictive AI and Generative AI with Data Streaming using Apache Kafka and Flink
Read More

Real-Time Model Inference with Apache Kafka and Flink for Predictive AI and GenAI

Artificial Intelligence (AI) and Machine Learning (ML) are transforming business operations by enabling systems to learn from data and make intelligent decisions for predictive and generative AI use cases. Two essential components of AI/ML are model training and inference. This blog post explores how data streaming with Apache Kafka and Flink enhances the performance and reliability of model predictions. Whether for real-time fraud detection, smart customer service applications or predictive maintenance, understanding the value of data streaming for model inference is crucial for leveraging AI/ML effectively.
Read More