Electric Vehicle (EV) Charging - Automotive and ESG with Data Streaming at Virta
Read More

Virta’s Electric Vehicle (EV) Charging Platform with Real-Time Data Streaming: Scalability for Large Charging Businesses

The rise of Electric Vehicles (EVs) demands a scalable, efficient charging network—but challenges like fluctuating demand, complex billing, and real-time availability updates must be addressed. Virta, a global leader in smart EV charging, is tackling these issues with real-time data streaming. By leveraging Apache Kafka and Confluent Cloud, Virta enhances energy distribution, enables predictive maintenance, and supports dynamic pricing. This approach optimizes operations, improves user experience, and drives sustainability. Discover how real-time data streaming is shaping the future of EV charging and enabling intelligent, scalable infrastructure.
Read More
Apache Kafka 4.0 - The Business Case for Data Streaming at Enterprise Scale
Read More

Apache Kafka 4.0: The Business Case for Scaling Data Streaming Enterprise-Wide

Apache Kafka 4.0 represents a major milestone in the evolution of real-time data infrastructure. Used by over 150,000 organizations worldwide, Kafka has become the de facto standard for data streaming across industries. This article focuses on the business value of Kafka 4.0, highlighting how it enables operational efficiency, faster time-to-market, and architectural flexibility across cloud, on-premise, and edge environments. Rather than detailing technical improvements, it explores Kafka’s strategic role in modern data platforms, the growing data streaming ecosystem, and how enterprises can turn event-driven architecture into competitive advantage. Kafka is no longer just infrastructure—it’s a foundation for digital business
Read More
Event-Driven Agentic AI with Data Streaming using Apache Kafka and Flink
Read More

How Apache Kafka and Flink Power Event-Driven Agentic AI in Real Time

Agentic AI marks a major evolution in artificial intelligence—shifting from passive analytics to autonomous, goal-driven systems capable of planning and executing complex tasks in real time. To function effectively, these intelligent agents require immediate access to consistent, trustworthy data. Traditional batch processing architectures fall short of this need, introducing delays, data staleness, and rigid workflows. This blog post explores why event-driven architecture (EDA)—powered by Apache Kafka and Apache Flink—is essential for building scalable, reliable, and adaptive AI systems. It introduces key concepts such as Model Context Protocol (MCP) and Google’s Agent-to-Agent (A2A) protocol, which are redefining interoperability and context management in multi-agent environments. Real-world use cases from finance, healthcare, manufacturing, and more illustrate how Kafka and Flink provide the real-time backbone needed for production-grade Agentic AI. The post also highlights why popular frameworks like LangChain and LlamaIndex must be complemented by robust streaming infrastructure to support stateful, event-driven AI at scale.
Read More
Shift Left Architecture at Siemens with Stream Processing using Apache Kafka and Flink
Read More

Shift Left Architecture at Siemens: Real-Time Innovation in Manufacturing and Logistics with Data Streaming

Industrial enterprises face increasing pressure to move faster, automate more, and adapt to constant change—without compromising reliability. Siemens Digital Industries addresses this challenge by combining real-time data streaming, modular design, and Shift Left principles to modernize manufacturing and logistics. This blog outlines how technologies like Apache Kafka, Apache Flink, and Confluent Cloud support scalable, event-driven architectures. A real-world example from Siemens’ Modular Intralogistics Platform illustrates how this approach improves data quality, system responsiveness, and operational agility.
Read More
The Importance of Focus for Software and Cloud Vendors - Data Streaming with Apache Kafka and Flink
Read More

The Importance of Focus: Why Software Vendors Should Specialize Instead of Doing Everything (Example: Data Streaming)

As real-time technologies reshape IT architectures, software vendors face a critical decision: specialize deeply in one domain or build a broad, general-purpose stack. This blog examines why a focused approach—particularly in the world of data streaming—delivers greater innovation, scalability, and reliability. It compares leading platforms and strategies, from specialized providers like Confluent to generalist cloud ecosystems, and highlights the operational risks of fragmented tools. With data streaming emerging as its own software category, enterprises need clarity, consistency, and deep expertise. In this post, we argue that specialization—not breadth—is what powers mission-critical, real-time applications at global scale.
Read More
Read More

The Top 20 Problems with Batch Processing (and How to Fix Them with Data Streaming)

Batch processing introduces delays, complexity, and data quality issues that modern businesses can no longer afford. This article outlines the most common problems with batch workflows—ranging from outdated insights to compliance risks—and illustrates each with real-world examples. It also highlights how real-time data streaming offers a more reliable, scalable, and future-proof alternative.
Read More
The Strangler Fig Design Pattern - Migration and Replacement of Legacy IT Applications with Data Streaming using Apache Kafka
Read More

Replacing Legacy Systems, One Step at a Time with Data Streaming: The Strangler Fig Approach

Modernizing legacy systems doesn’t have to mean a risky big-bang rewrite. This blog explores how the Strangler Fig Pattern, when combined with data streaming, enables gradual, low-risk transformation—unlocking real-time capabilities, reducing complexity, and supporting scalable, cloud-native architectures. Discover how leading organizations are using this approach to migrate at their own pace, stay compliant, and enable new business models. Plus, why Reverse ETL falls short and streaming is the future of IT modernization.
Read More
Retail Media with Data Streaming using Apache Kafka and Flink
Read More

Retail Media with Data Streaming: The Future of Personalized Advertising in Commerce

Retail media is reshaping digital advertising by using first-party data to deliver personalized, timely ads across online and in-store channels. As retailers build retail media networks, they unlock new revenue opportunities while improving ad effectiveness and customer engagement. The key to success lies in real-time data streaming, which enables instant targeting, automated bidding, and precise attribution. Technologies like Apache Kafka and Apache Flink make this possible, helping retailers like Albertsons enhance ad performance and maximize returns. This post explores how real-time streaming is driving the evolution of retail media
Read More
Learnings from the CIO Summit: AI + Data Streaming = Key for Success
Read More

CIO Summit: The State of AI and Why Data Streaming is Key for Success

The CIO Summit in Amsterdam provided a valuable perspective on the state of AI adoption across industries. While enthusiasm for AI remains high, organizations are grappling with the challenge of turning potential into tangible business outcomes. Key discussions centered on distinguishing hype from real value, the importance of high-quality and real-time data, and the role of automation in preparing businesses for AI integration. A recurring theme was that AI is not a standalone solution—it must be supported by a strong data foundation, clear ROI objectives, and a strategic approach. As AI continues to evolve toward more autonomous, agentic systems, data streaming will play a critical role in ensuring AI models remain relevant, context-aware, and actionable in real time.
Read More
How Data Streaming and AI Help Telcos - Top 5 Trends from MWC 2025
Read More

How Data Streaming and AI Help Telcos to Innovate: Top 5 Trends from MWC 2025

As the telecom and tech industries rapidly evolve, real-time data streaming is emerging as the backbone of digital transformation. For MWC 2025, McKinsey outlined five key trends defining the future: IT excellence, sustainability, 6G, generative AI, and AI-driven software development. This blog explores how data streaming powers each of these trends, enabling real-time observability, AI-driven automation, energy efficiency, ultra-low latency networks, and faster software innovation. From Dish Wireless’ cloud-native 5G network to Verizon’s edge AI deployments, leading companies are leveraging event-driven architectures to gain a competitive advantage. Whether you’re tackling network automation, sustainability challenges, or AI monetization, data streaming is the strategic enabler for 2025 and beyond. Read on to explore the latest use cases, industry insights, and how to future-proof your telecom strategy.
Read More