The Strangler Fig Design Pattern - Migration and Replacement of Legacy IT Applications with Data Streaming using Apache Kafka
Read More

Replacing Legacy Systems, One Step at a Time with Data Streaming: The Strangler Fig Approach

Modernizing legacy systems doesn’t have to mean a risky big-bang rewrite. This blog explores how the Strangler Fig Pattern, when combined with data streaming, enables gradual, low-risk transformation—unlocking real-time capabilities, reducing complexity, and supporting scalable, cloud-native architectures. Discover how leading organizations are using this approach to migrate at their own pace, stay compliant, and enable new business models. Plus, why Reverse ETL falls short and streaming is the future of IT modernization.
Read More
Request Response Data Exchange with Apache Kafka vs CQRS and Event Sourcing
Read More

When to use Request-Response with Apache Kafka?

How can I do request-response communication with Apache Kafka? That’s one of the most common questions I get regularly. This blog post explores when (not) to use this message exchange pattern, the differences between synchronous and asynchronous communication, the pros and cons compared to CQRS and event sourcing, and how to implement request-response within the data streaming infrastructure.
Read More
How to do Error Handling in Data Streaming
Read More

Error Handling via Dead Letter Queue in Apache Kafka

Recognizing and handling errors is essential for any reliable data streaming pipeline. This blog post explores best practices for implementing error handling using a Dead Letter Queue in Apache Kafka infrastructure. The options include a custom implementation, Kafka Streams, Kafka Connect, the Spring framework, and the Parallel Consumer. Real-world case studies show how Uber, CrowdStrike, Santander Bank, and Robinhood build reliable real-time error handling at an extreme scale.
Read More