Data integration and processing in Industrial IoT (IIoT, aka Industry 4.0 or Automation Industry). Apache Kafka, its ecosystem (Kafka Connect, KSQL) and Apache PLC4X are a great open source choice to implement this integration end to end in a scalable, reliable and flexible way.
Apache Kafka and Machine Learning for Real Time Supply Chain Optimization: Integrate in real time with the legacy world and proprietary IIoT protocols (like Siemens S7, Modbus, Beckhoff ADS, OPC-UA, et al). You can process the data at scale and then ingest it into a modern database or analytic / machine learning framework.
Streaming Processing with Apache Kafka and KSQL for Data Scientists via Python and Jupyter Notebooks to build analytic models with TensorFlow and Keras.
KSQL UDF for sensor analytics. Leverages the new API features of KSQL to build UDF / UDAF functions easily with Java to do continuous stream processing with Apache Kafka. Use Case: Connected Cars – Real Time Streaming Analytics using Deep Learning.
Machine Learning / Deep Learning models can be used in different ways to do predictions. Natively in the application or hosted in a remote model server. Then you combine stream processing with RPC / Request-Response paradigm. This blog post shows examples of stream processing vs. RPC model serving using Java, Apache Kafka, Kafka Streams, gRPC and TensorFlow Serving.