Shift Left Architecture at Siemens with Stream Processing using Apache Kafka and Flink
Read More

Shift Left Architecture at Siemens: Real-Time Innovation in Manufacturing and Logistics with Data Streaming

Industrial enterprises face increasing pressure to move faster, automate more, and adapt to constant change—without compromising reliability. Siemens Digital Industries addresses this challenge by combining real-time data streaming, modular design, and Shift Left principles to modernize manufacturing and logistics. This blog outlines how technologies like Apache Kafka, Apache Flink, and Confluent Cloud support scalable, event-driven architectures. A real-world example from Siemens’ Modular Intralogistics Platform illustrates how this approach improves data quality, system responsiveness, and operational agility.
Read More
Tesla Energy Platform - The Power of Data Streaming with Apache Kafka
Read More

Tesla Energy Platform – The Power of Data Streaming with Apache Kafka

Tesla’s Virtual Power Plant (VPP) turns thousands of home batteries, solar panels, and energy storage systems into a coordinated, intelligent energy network. By leveraging Apache Kafka for event streaming and WebSockets for real-time IoT connectivity, Tesla enables instant energy redistribution, dynamic grid balancing, and automated market participation. This event-driven architecture ensures millisecond-level decision-making, allowing homeowners to optimize energy usage and utilities to stabilize power grids. Tesla’s approach highlights how real-time data streaming and intelligent automation are reshaping the future of decentralized, resilient, and sustainable energy systems.
Read More
The Shift Left Architecture
Read More

The Shift Left Architecture – From Batch and Lakehouse to Real-Time Data Products with Data Streaming

Data integration is a hard challenge in every enterprise. Batch processing and Reverse ETL are common practices in a data warehouse, data lake or lakehouse. Data inconsistency, high compute cost, and stale information are the consequences. This blog post introduces a new design pattern to solve these problems: The Shift Left Architecture enables a data mesh with real-time data products to unify transactional and analytical workloads with Apache Kafka, Flink and Iceberg. Consistent information is handled with streaming processing or ingested into Snowflake, Databricks, Google BigQuery, or any other analytics / AI platform to increase flexibility, reduce cost and enable a data-driven company culture with faster time-to-market building innovative software applications.
Read More
Apache Kafka and Snowflake Cost Efficiency and Data Governance
Read More

Apache Kafka + Flink + Snowflake: Cost Efficient Analytics and Data Governance

Snowflake is a leading cloud data warehouse and transitions into a data cloud that enables various use cases. The major drawback of this evolution is the significantly growing cost of the data processing. This blog post explores how data streaming with Apache Kafka and Apache Flink enables a “shift left architecture” where business teams can reduce cost, provide better data quality, and process data more efficiently. The real-time capabilities and unification of transactional and analytical workloads using Apache Iceberg’s open table format enable new use cases and a best of breed approach without a vendor lock-in and the choice of various analytical query engines like Dremio, Starburst, Databricks, Amazon Athena, Google BigQuery, or Apache Flink.
Read More